
228

8.5 Object-Oriented Design

When you are faced with an open-ended problem of designing a program, object-
oriented techniques can help. In many situations data elements can be organized
into classes, which are usually easy to implement. If you can express the central
algorithms of the problem in terms of these classes you probably have a good
design for the program. For example, a program that records students grades
(a virtual Registar program) might have a Person class, with subclasses for Stu-
dents and Faculty, and a Course class, where a course would have an instructor
and a list of Students. Each Student would have a current Schedule, with a
list of classes, and a Transcript, which would include a list of class names and
grades. A Student taking a Course would be represented by adding the student
to the Course object’s list of students,then at the end of the term getting a grade
from the instructor and the course name and grade being added to the Student’s
transcript. By the time you implemented all of these classes the program would
be mostly written.

For another example, suppose you are creating a predator-prey simulation.
You would need a Predator class that describes the predator’s ability to move
around and locate the prey, and the predator’s ability to kill nearby prey. You
would have a corresponding Prey classes that describes the prey’s ability to avoid
being eaten. You might have an Environment class that both the Predator and
Prey classes interact with. And you might have a World class that consists of
a large grid, every cell of which has an Environment object and possibly one or
more Predator and Prey objects.

Once you have identified possible classes for your program, try to write a
brief description of each class. The closer the classes are to physical objects, or
to objects that could be physical, the easier they will be to code. Try to write
down the data elements of each class, and what kinds of Python representation
each will have. Then write a description of each of the major methods of each
class. You should do all of this before you start coding If you can describe the
functionality of your program in terms of the class methods and you can see
how to implement each of the methods, you have a winning program design that
should be straightforward to implement. If you can’t do these things there is
no point in starting the coding. Try looking for a solution in terms of different
class breakdowns.

As a demonstration of this we will develop a card game. This game will
be played with a standard deck of 52 playing cards, with 13 cards in each of
the suits Hearts, Spades, Diamonds and Clubs. To avoid implementing lengthy
rules (which is better, a Full House or a Flush??) the game we will implement is
the children’s game War – on each round all of the players turn over their next
card; the highest card wins. If there is a tie the players go again. The player
who wins the most cards wins the game. This is not a very interesting game to
play and it is even more uninteresting too watch, but the techniques and much
of the code we will develop could be used to implement more interesting card
games, from Go Fish to Texas Hold ‘Em.

Our game will need 3 classes:

8.5. OBJECT-ORIENTED DESIGN 229

• class Card represents a single playing card. The data Card needs is the
suit and name of the card. The names will be strings: ”2”, ”3”, ”4”, ...,
up to ”10”, ”Jack”, ”Queen”, ”King” and ”Ace”. For suits we could easily
use the strings ”Hearts”, ”Spades” and so forth, but for fun we will take
advantage of Python’s use of Unicode and use graphical representations
of the suits. The Heart symbol is chr(9825), Spades is char(9824), Clubs
is char(9827), and Diamonds is chr(9826). Cards don’t do anything, so
our only methods will be a constructor, a str () method for printing,
and a few comparison methods.

• class Deck will represent a deck of 52 cards. The only data is a list of the
cards currently in the deck. Besides a constructor we need a method for
shuffling the deck and another for dealing cards to players.

• class Player will represent one player of the game. This is a very simple
class that keeps track of the player’s name, current hand, and points. The
only method this needs other than a constructor is a method that reveals
the next card in the player’s hand.

We will begin with the Card class. We’ll define constants at the top that give
the Unicode characters for our suits; this is the only place in the entire program
we’ll need to refer to these characters. Elsewhere we can refer to these suits as
Card.HEARTS, Card.SPADES, and so forth. The constructor just assigns values;
the real work has to be done by whoever calls the constructor.

Here is the complete code for the Card class:

230

class Card :
HEARTS = chr (9825)
SPADES = chr (9824)
CLUBS = chr (9827)
DIAMONDS = chr (9826)

def i n i t (s e l f , name , s u i t , v a l u e) :
s e l f . name = name
s e l f . s u i t = s u i t
s e l f . v a l u e = v a l u e

def s t r (s e l f) :
return ”%s %s ” %(s e l f . name , s e l f . s u i t)

def l t (s e l f , x) :
i f s e l f . v a l u e < x . v a l u e :

return True
else :

return F a l s e

def g t (s e l f , x) :
return s e l f . v a l u e > x . v a l u e

def e q (s e l f , x) :
return s e l f . v a l u e == x . v a l u e

The Card class

Note the lt () and gt () methods. These give two different ways to write
similar comparisons. In lt () we do the comparison with <, look at the
result, and decide what to return. In gt () we realize that what we need to
return is the result of the > comparison; we could just as easily have written

lt () as

def l t (s e l f , x) :
return s e l f . v a l u e < x . v a l u e

The Deck class only has three methods, but each is more substantial than any-
thing in the Card class. The constructor isn’t difficult, but it requires some
organization. We start by initializing the instance variable that will hold the
list of cards in the deck to the empty list: self . cards=[]. Then, for each suit
we add each of the number cards. Note that if x is a number betweem 2 and
10, str(x) is the string version of the number: ”2” for 2, ”10” for 10. After

8.5. OBJECT-ORIENTED DESIGN 231

the number cards we add the Jack, Queen, King and Ace. The number on the
number cards is the card’s numeric value for comparison purposes; the value of
a Jack is 11, that for a Queen is 12, for a King is 13 and for an Ace is 14. Note
that in some card games an Ace is low, and in some it is either high or low; in
ours it is always high. It would be possible to design a different class that had
options for how the Ace is treated.

Here is the constructor code:

def i n i t (s e l f) :
s e l f . c a r d s = []
for s u i t in [Card . HEARTS, Card . SPADES ,

Card .DIAMONDS, Card . CLUBS] :
for number in range (2 , 1 1) :

s e l f . c a r d s . append (Card (str (number) ,
s u i t , number))

s e l f . c a r d s . append (Card (” Jack ” , s u i t , 1 1))
s e l f . c a r d s . append (Card (”Queen” , s u i t , 1 2))
s e l f . c a r d s . append (Card (” King ” , s u i t , 1 3))
s e l f . c a r d s . append (Card (”Ace” , s u i t , 1 4))

In most card games the dealer cycles around all of the players giving each
one card until everyone has the right number of cards. This guards against
poorly shuffled decks and also provides some protection against a malicious
dealer stacking the deck. We are not concerned about either of those problems
since we will control how the cards are dealt, so it seems easier to have the
Deal() method take the appropriate number of cards off the top of the deck and
return them as a list of cards. We must remember to remove them from the
deck so they can’t be given to any other player. The only issue is what to do if
the deck runs out of cards. Our solution is to give as many cards as the deck
has, though you could make an argument for throwing an exception or taking
other drastic action. Here is the resulting Deal method.

def i n i t (s e l f) :
def Deal (s e l f , n) :

r e t u r n s a l i s t o f n c a r d s
L = []
for i in range (0 , n) :

i f len (s e l f . c a r d s) > 0 :
c a r d = s e l f . c a r d s [0]
del s e l f . c a r d s [0]
L . append (c a r d)

return L

The remaining method for the Deck class is Shuffle (). There are simple ways
to randomize the elements of a list, but we are going to use a formal shuffling
algorithm that has been proven to be fair: if the random number generator we
use is good, our shuffle algorithm produces every possible ordering of the list
and all of these orderings are equally likely. This is known as the Fisher-Yates

232

shuffle since it was first defined by statisticians Ronald Fisher and Frank Yates
in 1938. It is also called the Knuth shuffle since it was popularized by Donald
Knuth in The Art of Computer Programming. The idea behind this algorithm
is simple. We start at the end of the list and work our way towards the front.
At each step we swap the current element with a random element closer to the
front. When this is finished, the list is sorted:

def S h u f f l e (s e l f) :
n = len (s e l f . c a r d s)−1
while n > 0 :

k = r a n d i n t (0 , n)
swap the kth and nth ca r d s
A = s e l f . c a r d s [k]
B = s e l f . c a r d s [n]
s e l f . c a r d s [k] = B
s e l f . c a r d s [n] = A
n = n − 1

Altogether, here is the complete Deck class:

8.5. OBJECT-ORIENTED DESIGN 233

from Card import ∗
from random import ∗

class Deck :
def i n i t (s e l f) :

s e l f . c a r d s = []
for s u i t in [Card . HEARTS, Card . SPADES ,

Card .DIAMONDS, Card . CLUBS] :
for number in range (2 , 1 1) :

s e l f . c a r d s . append (Card (str (number) ,
s u i t , number))

s e l f . c a r d s . append (Card (” Jack ” , s u i t , 1 1))
s e l f . c a r d s . append (Card (”Queen” , s u i t , 1 2))
s e l f . c a r d s . append (Card (” King ” , s u i t , 1 3))
s e l f . c a r d s . append (Card (”Ace” , s u i t , 1 4))

def Deal (s e l f , n) :
r e t u r n s a l i s t o f n c a r d s
L = []
for i in range (0 , n) :

i f len (s e l f . c a r d s) > 0 :
c a r d = s e l f . c a r d s [0]
del s e l f . c a r d s [0]
L . append (c a r d)

return L

def S h u f f l e (s e l f) :
n = len (s e l f . c a r d s)−1
while n > 0 :

k = r a n d i n t (0 , n)
swap the kth and nth ca r d s
A = s e l f . c a r d s [k]
B = s e l f . c a r d s [n]
s e l f . c a r d s [k] = B
s e l f . c a r d s [n] = A
n = n − 1

The Deck class

With just this much we can implement a simple game I call Cut the Deck. We
make a deck and two players each ”cut the deck” by choosing an index between
0 and 51. The one who gets the higher card wins. If the cards have the same

234

value they go again.

This i s a s imp l e game s imu l a t i n g two peop l e
c u t t i n g a deck o f c a r d s .
The game con t i n u e s u n t i l one g e t s a h i g h e r
card than the o th e r .
from Deck import ∗

def cu t (deck , p l a y e r) :
i n d e x = eval (input (”Where does %s c ut t he deck ? ”

% p l a y e r))
i f i n d e x >= 5 2 :

i n d e x = 52
e l i f i n d e x < 0 :

i n d e x = 0
return deck . c a r d s [i n d e x]

def main () :
D = Deck ()
p l a y e r 1 = input (”Who i s th e f i r s t p l a y e r ? ”)
p l a y e r 2 = input (”Who i s th e second p l a y e r ? ”)
done = F a l s e
while not done :

D. S h u f f l e ()
c a rd 1 = cu t (D, p l a y e r 1)
print (”%s draws %s ” %(p l a y e r 1 , c a rd 1))
c ard 2 = cu t (D, p l a y e r 2)
print (”%s draws %s ” %(p l a y e r 2 , c a rd 2))

i f c ard 1 > c ard 2 :
print (”%s wins ! ” %p l a y e r 1)
done = True

e l i f c ard 2 > ca rd 1 :
print (”%s wins ! ” %p l a y e r 2)
done = True

else :
print (” Tie ; p l a y a g a i n . ”)

main ()

Program 8.5.1: Game CutTheDeck

For our War game we need a player class. This will keep track of the player’s
name and hand of cards. In one round of the game each player plays one card;

8.5. OBJECT-ORIENTED DESIGN 235

since this involves multiple players it isn’t a method of the Player class. Instead
we give the class a method for playing one card, and put off the rest for our
final implementation of the game. Here is the player class:

from Deck import ∗

class P l a y e r :
def i n i t (s e l f , name , deck , numCards) :

s e l f . name = name
s e l f . hand = deck . Deal (numCards)
s e l f . p o i n t s = 0

def nextCard (s e l f) :
c a r d = s e l f . hand [0]
del s e l f . hand [0]
print (”%s p l a y s %s ” %(s e l f . name , c a r d))
return c a r d

The Player class

Finally, we need to implement the game itself. This has a play () function that
has each player play one card. The cards are compared. If there is a winner
the appropriate number of points (the number of cards won) are added to that
player’s total score; if there is no winner the play continues. Naturally, a loop
describes this; it continues until one of the players wins or the players run out
of cards.

The rest of the game is described in the main() function. This gets the
players’ names, constructs the players, and calls the play () method in a loop
until the players run out of cards. At the end it reports the winner: the player
with the highest score. Here is the full game:

236

from P l a y e r import ∗

def p l a y (p l a y e r 1 , p l a y e r 2) :
p o i n t s = 0
done = F a l s e
while not done :

c1 = p l a y e r 1 . nextCard ()
c2 = p l a y e r 2 . nextCard ()
p o i n t s = p o i n t s +2
i f c1 > c2 :

p l a y e r 1 . p o i n t s = p l a y e r 1 . p o i n t s + p o i n t s
print (”%s has %d p o i n t s \n” %

(p l a y e r 1 . name , p l a y e r 1 . p o i n t s))
done = True

e l i f c2 > c1 :
p l a y e r 2 . p o i n t s = p l a y e r 2 . p o i n t s + p o i n t s
print (”%s has %d p o i n t s \n” %

(p l a y e r 2 . name , p l a y e r 2 . p o i n t s))
done = True

e l i f len (p l a y e r 1 . hand) == 0 :
done = True

def main () :
deck = Deck ()
deck . S h u f f l e ()
p l a y e r 1 = P l a y e r (”bob” , deck , 26)
p l a y e r 2 = P l a y e r (” marv in ” , deck , 26)

while len (p l a y e r 1 . hand) > 0 :
p l a y (p l a y e r 1 , p l a y e r 2)

i f p l a y e r 1 . p o i n t s == p l a y e r 2 . p o i n t s :
print (” Tie game”)

else :
i f p l a y e r 1 . p o i n t s > p l a y e r 2 . p o i n t s :

w i n n e r = p l a y e r 1
else :

w i n n e r = p l a y e r 2
print (”%s wins w i t h %d p o i n t s ” %

(w i n n e r . name , w i n n e r . p o i n t s))

main ()

Program 8.5.2: Game CutTheDeck

8.5. OBJECT-ORIENTED DESIGN 237

Notice how easy the game was to implement after all of our classes were defined.
This is a sign of a successful object-oriented design. If you can’t use the classes
to solve the overarching problem you are working on, you probably haven’t yet
found a good class system for your problem.

